首页> 外文OA文献 >Damage detection in a benchmark structure using AR-ARX models and statistical pattern recognition
【2h】

Damage detection in a benchmark structure using AR-ARX models and statistical pattern recognition

机译:使用AR-ARX模型和统计模式识别的基准结构中的损坏检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural health monitoring (SHM) is related to the ability of monitoring the state and deciding the level of damage or deterioration within aerospace, civil and mechanical systems. In this sense, this paper deals with the application of a two-step auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model for linear prediction of damage diagnosis in structural systems. This damage detection algorithm is based on the. monitoring of residual error as damage-sensitive indexes, obtained through vibration response measurements. In complex structures there are. many positions under observation and a large amount of data to be handed, making difficult the visualization of the signals. This paper also investigates data compression by using principal component analysis. In order to establish a threshold value, a fuzzy c-means clustering is taken to quantify the damage-sensitive index in an unsupervised learning mode. Tests are made in a benchmark problem, as proposed by IASC-ASCE with different damage patterns. The diagnosis that was obtained showed high correlation with the actual integrity state of the structure. Copyright © 2007 by ABCM.
机译:结构健康监视(SHM)与监视状态并确定航空,民用和机械系统内损坏或退化程度的能力有关。从这个意义上讲,本文研究了两步自回归和外源自回归(AR-ARX)模型在结构系统损伤诊断的线性预测中的应用。这种损害检测算法是基于的。通过振动响应测量获得的残余误差作为损伤敏感指标的监视。在复杂的结构中。观察中的许多位置以及要处理的大量数据,使信号的可视化变得困难。本文还研究了使用主成分分析的数据压缩。为了建立阈值,采用模糊c均值聚类在无监督学习模式下量化损伤敏感指标。按照IASC-ASCE提出的基准测试问题进行测试,并采用不同的损坏方式。获得的诊断结果与结构的实际完整性状态高度相关。 ABCM版权所有©2007。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号